On dispersal and population growth for multistate matrix models

Chi-Kwong Li and Sebastian J. Schreiber
Department of Mathematics
The College of William and Mary
Williamsburg, Virginia 23187-8795
ckli@math.wm.edu sjs@math.wm.edu
Basic Problem

Suppose a population (e.g., viruses, animals, plants, molecules, money!) residing in an environment consisting of n spatial locations, and the population has m age classes or life stages.
Basic Problem

Suppose a population (e.g., viruses, animals, plants, molecules, money!) residing in an environment consisting of \(n \) spatial locations, and the population has \(m \) age classes or life stages.

If there is no dispersion across the environment, then the growth dynamics in the patches are governed or approximated by the linear models determined by the \(m \times m \) nonnegative matrices \(A_1, \ldots, A_n \).

[That is \(x_j(t+1) = A_jx_j(t) \) for \(j = 1, \ldots, n \).]
Basic Problem

Suppose a population (e.g., viruses, animals, plants, molecules, money!) residing in an environment consisting of n spatial locations, and the population has m age classes or life stages.

If there is no dispersion across the environment, then the growth dynamics in the patches are governed or approximated by the linear models determined by the $m \times m$ nonnegative matrices A_1, \ldots, A_n.

[That is $x_j(t+1) = A_j x_j(t)$ for $j = 1, \ldots, n$.]

Here we want to study the change of the overall growth rate if dispersions take place in the m age classes governed by the $n \times n$ column substochastic matrices S_1, \ldots, S_m.

[The (p, q) entry of S_j represents the fraction of the individuals in the jth age class moving from patch q to patch p.]
The system is now described by SD, where

$$S = S_1 \oplus \cdots \oplus S_m$$

and

$$D = (D_{ij})_{1 \leq i,j \leq m}$$

such that each $D_{ij} \in M_n$ is a diagonal matrix and

$$D[1, n+1, \ldots, (m-1)n+1; 1, n+1, \ldots, (m-1)n+1] = A_1,$$

$$D[2, n+2, \ldots, (m-1)n+2; 2, n+2, \ldots, (m-1)n+2] = A_2, \ldots,$$

$$D[n, 2n, \ldots, mn; n, 2n, \ldots, mn] = A_n.$$
The system is now described by SD, where

$$S = S_1 \oplus \cdots \oplus S_m \quad \text{and} \quad D = (D_{ij})_{1 \leq i,j \leq m}$$

such that each $D_{ij} \in M_n$ is a diagonal matrix and

$$D[1, n+1, \ldots, (m-1)n+1; 1, n+1, \ldots, (m-1)n+1] = A_1,$$

$$D[2, n+2, \ldots, (m-1)n+2; 2, n+2, \ldots, (m-1)n+2] = A_2, \ldots,$$

$$D[n, 2n, \ldots, mn; n, 2n, \ldots, mn] = A_n.$$

Example Suppose $S_1, S_2 \in M_3$, and $A_1, A_2, A_3 \in M_2$. Then

$$D = \begin{pmatrix}
(A_1)_{11} & 0 & 0 & (A_1)_{12} & 0 & 0 & 0 \\
0 & (A_2)_{11} & 0 & 0 & (A_2)_{12} & 0 & 0 \\
0 & 0 & (A_3)_{11} & 0 & 0 & (A_3)_{12} & 0 \\
(A_1)_{21} & 0 & 0 & (A_2)_{21} & 0 & 0 & 0 \\
0 & (A_2)_{21} & 0 & 0 & (A_2)_{22} & 0 & 0 \\
0 & 0 & (A_3)_{21} & 0 & 0 & (A_3)_{22} & 0
\end{pmatrix}.$$
We are interested in the Perron root $\rho(\text{SD})$, which determine the growth rate.
We are interested in the Perron root $\rho(\text{SD})$, which determine the growth rate.

If $n = 1$, then each S_j is 1×1, i.e., S is diagonal and equals I; so,

$$
\rho(\text{SD}) = \rho(\text{D}).
$$
We are interested in the Perron root $\rho(\mathbf{SD})$, which determine the growth rate.

If $n = 1$, then each S_j is 1×1, i.e., S is diagonal and equals I; so,

$$\rho(\mathbf{SD}) = \rho(\mathbf{D}).$$

If $m = 1$, then each A_j is 1×1, i.e., D is diagonal, and

$$\rho(\mathbf{SD}) \leq \|\mathbf{SD}\| \leq \|S\|\|D\| \leq \rho(\mathbf{D}),$$

here $\| \cdot \|$ is the column sum norm.
We are interested in the Perron root $\rho(SD)$, which determine the growth rate.

If $n = 1$, then each S_j is 1×1, i.e., S is diagonal and equals I; so,

$$\rho(SD) = \rho(D).$$

If $m = 1$, then each A_j is 1×1, i.e., D is diagonal, and

$$\rho(SD) \leq \|SD\| \leq \|S\|\|D\| \leq \rho(D),$$

here $\|\cdot\|$ is the column sum norm.

Question How about the general case?
An Example

Consider a population of juveniles and mature adults living in two spatial locations (e.g., small salmon develop in fresh water and mature salmon move to ocean to reproduce). Suppose

\[A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 0 & 100 \\ 0 & 0 \end{pmatrix}. \]

That is, each small salmon grows to a mature salmon in fresh water, and each salmon reproduces 100 salmon in the ocean. If no dispersion is allowed, i.e., \(S = I_2 \oplus I_2 \), then the growth rate of the whole system equals

\[\rho(D) = \rho \left(\begin{array}{cc|cc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 100 \\ \hline 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) = 0. \]
An Example

Consider a population of juveniles and mature adults living in two spatial locations (e.g., small salmon develop in fresh water and mature salmon move to ocean to reproduce). Suppose

\[
A_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad A_2 = \begin{pmatrix} 0 & 100 \\ 0 & 0 \end{pmatrix},
\]

That is, each small salmon grows to a mature salmon in fresh water, and each salmon reproduces 100 salmon in the ocean. If no dispersion is allowed, i.e., \(S = I_2 \oplus I_2 \), then the growth rate of the whole system equals

\[
\rho(D) \equiv \rho \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 100 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = 0.
\]

In fact, the population goes extinct in two time steps as \(D^2 = 0 \).
Alternatively, if all juveniles move to patch 1 and all adults move to patch 2, then

\[S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad S_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}. \]

In which case,

\[
\rho(\text{SD}) = \rho \begin{pmatrix} 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = 10,
\]

and the population grows asymptotically at a geometric rate.
Alternatively, if all juveniles move to patch 1 and all adults move to patch 2, then

\[S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad S_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}. \]

In which case,

\[\rho(\text{SD}) = \rho \begin{pmatrix} 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = 10, \]

and the population grows asymptotically at a geometric rate.

If we are dealing the viruse of a fatal disease, we certainly want the viruses to go extinct!
Alternatively, if all juveniles move to patch 1 and all adults move to patch 2, then

\[S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad S_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}. \]

In which case,

\[
\rho(SD) = \rho \begin{pmatrix} 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = 10,
\]

and the population grows asymptotically at a geometric rate.

If we are dealing the viruse of a fatal disease, we certainly want the viruses to go extinct!

Question Given \(S \) and \(D \), find a practical way of determining whether or not \(\rho(SD) \leq \rho(D) \).
Alternatively, if all juveniles move to patch 1 and all adults move to patch 2, then

\[S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad S_2 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}. \]

In which case,

\[\rho(SD) = \rho \begin{pmatrix} 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} = 10, \]

and the population grows asymptotically at a geometric rate.

If we are dealing the viruse of a fatal disease, we certainly want the viruses to go extinct!

Question Given \(S \) and \(D \), find a practical way of determining whether or not \(\rho(SD) \leq \rho(D) \).

Question Determine \(S \) so that \(\rho(SD) \leq \rho(D) \) for all \(D \).
Definition Suppose \(S = S_1 \oplus \cdots \oplus S_m \) is given. For \(i = 1, \ldots, m \), let \(G_i \) be the directed graph of \(S_i \) with vertices \(1, \ldots, n \). Here we ignore the diagonal entries of \(S_i \), and assume that the edges of \(G_i \) has color \(i \).
Result

Definition Suppose $S = S_1 \oplus \cdots \oplus S_m$ is given. For $i = 1, \ldots, m$, let G_i be the directed graph of S_i with vertices $1, \ldots, n$. Here we ignore the diagonal entries of S_i, and assume that the edges of G_i has color i.

We say that S_1, \ldots, S_m admits a polychromatic cycle if there are nonzero entries of $S_1 + \cdots + S_m$ at the $(i_1, i_2), (i_2, i_3), \ldots, (i_{k-1}, i_k), (i_k, i_1)$ positions for some distinct $i_1, \ldots, i_k \in \{1, \ldots, n\}$, and these nonzero entries do not come from a single matrix S_j.
Theorem [Li & Schreiber, 2006] Suppose $S = S_1 \oplus \cdots \oplus S_m$ so that S_1, \ldots, S_m are $n \times n$ column substochastic matrices. The following conditions are equivalent.

(a) For any nonnegative block matrix $D = (D_{ij})_{1 \leq i, j \leq m}$ such that $D_{ij} \in M_n$ is a diagonal matrix, we have

$$\rho(SD) \leq \rho(D).$$

(b) S_1, \ldots, S_m does not admit a polychromatic cycle.
Idea of Proof

Note that $\rho(\text{SD}) = \rho(\text{PSP}^t\text{PDP}^t) = \rho(\text{RA})$, where

$$A = A_1 \oplus \cdots \oplus A_n \quad \text{and} \quad R = (R_{ij})_{1 \leq i, j \leq n}$$

such that R_{ij} is a diagonal matrix and

$$R[1, m + 1, \ldots, (n - 1)m + 1; 1, m + 1, \ldots, (n - 1)m + 1] = S_1, \ldots,$$

$$R[2, m + 2, \ldots, (n - 1)m + 2; 2, m + 2, \ldots, (n - 1)m + 2] = S_2,$$

$$R[m, 2m, \ldots, nm; m, 2m \ldots, nm] = S_n,$$
Idea of Proof

Note that $\rho(\text{SD}) = \rho(\text{PSP}^t\text{PDP}^t) = \rho(\text{RA})$, where

$$A = A_1 \oplus \cdots \oplus A_n \quad \text{and} \quad R = (R_{ij})_{1 \leq i, j \leq n}$$

such that R_{ij} is a diagonal matrix and

$$R[1, m+1, \ldots, (n-1)m+1; 1, m+1, \ldots, (n-1)m+1] = S_1, \ldots,$$

$$R[2, m+2, \ldots, (n-1)m+2; 2, m+2, \ldots, (n-1)m+2] = S_2,$$

$$R[m, 2m, \ldots, nm; m, 2m \ldots, nm] = S_n,$$

Example Suppose $S_1, S_2 \in M_3$, $A_1, A_2, A_3 \in M_2$. Then

$$R = \begin{pmatrix}
(S_1)_{11} & 0 & (S_1)_{12} & 0 & (S_1)_{13} & 0 \\
0 & (S_2)_{11} & 0 & (S_2)_{12} & 0 & (S_2)_{13} \\
(S_1)_{21} & 0 & (S_1)_{22} & 0 & (S_1)_{23} & 0 \\
0 & (S_2)_{21} & 0 & (S_2)_{22} & 0 & (S_2)_{23} \\
(S_1)_{31} & 0 & (S_1)_{32} & 0 & (S_1)_{33} & 0 \\
0 & (S_2)_{31} & 0 & (S_2)_{32} & 0 & (S_2)_{33}
\end{pmatrix}.$$
(b) ⇒ (a): Assume that S_1, \ldots, S_m admit a polychromatic cycle. We cook up D strategically so that D is similar to $A = A_1 \oplus \cdots \oplus A_n$, where for each $j = 1, \ldots, n$, $\rho(A_j) = 1$ and (some) A_j has large off-diagonal entries positioned in such a way that $\rho(SD) > 1$.
(b) ⇒ (a): Assume that S_1, \ldots, S_m admit a polychromatic cycle. We cook up D strategically so that D is similar to $A = A_1 \oplus \cdots \oplus A_n$, where for each $j = 1, \ldots, n$, $\rho(A_j) = 1$ and (some) A_j has large off-diagonal entries positioned in such a way that $\rho(SD) > 1$.

(a) ⇒ (b): Assume that S_1, \ldots, S_m do not admit a polychromatic cycle. We show that there exists a nonnegative diagonal matrix V such that

* VSV^{-1} is column substochastic, and

* $VDV^{-1}/\rho(D)$ is column stochastic.

Thus,

$$\rho(SD) = \rho(VSDV^{-1}) \leq \|VSDV^{-1}\| \leq \|VSV^{-1}\| \|VDV^{-1}\| \leq \rho(D).$$
(b) ⇒ (a): Assume that S_1, \ldots, S_m admit a polychromatic cycle. We cook up D strategically so that D is similar to $A = A_1 \oplus \cdots \oplus A_n$, where for each $j = 1, \ldots, n$, $\rho(A_j) = 1$ and (some) A_j has large off-diagonal entries positioned in such a way that $\rho(SD) > 1$.

(a) ⇒ (b): Assume that S_1, \ldots, S_m do not admit a polychromatic cycle. We show that there exists a nonnegative diagonal matrix V such that

* VSV^{-1} is column substochastic, and

* $VDV^{-1}/\rho(D)$ is column stochastic.

Thus,

$$\rho(SD) = \rho(VSDV^{-1}) \leq \|VSDV^{-1}\| \leq \|VSV^{-1}\|\|VDV^{-1}\| \leq \rho(D).$$

The construction of V was done by an intricate labelling scheme of the vertices of S_1, \ldots, S_m using the information of the Perron vectors of A_1, \ldots, A_m.
Applications

Example 1 (Patch development models) Many species live in environments where the patches change state stochastically in time. In such cases,

\[S = I_m \otimes S \quad \text{and} \quad D = \sum_{j=1}^{n} A_j \otimes E_{jj} \]

then the population dynamics are given by \(x(t + 1) = S \times D \times x(t) \). Since \(S \) admits a polychromatic cycle if and only if \(S \) has a cycle, our theorem implies that \(\rho(S \times D) \leq \rho(D) \) for all \(D \) if and only if \(S \) admits no cycle.
Example 2 (Planktonic dynamics) Caswell describes a stage structured and spatially structured model of Davis for planktonic species (e.g. copepods, water fleas, etc.) dispersing in ocean currents during their larval stage.

The model for the planktonic dynamics is given by

$$x(t + 1) = A x(t) \quad \text{where} \quad A = T \otimes I_n + (S \oplus (I_{m-1} \otimes I_n))(F \otimes I_n),$$

where S is column substochastic, T, F are nonnegative so that only the first row of F is nonzero.
Example 2 (Planktonic dynamics) Caswell describes a stage structured and spatially structured model of Davis for planktonic species (e.g. copepods, water fleas, etc.) dispersing in ocean currents during their larval stage.

The model for the planktonic dynamics is given by

\[x(t+1) = A x(t) \]

where

\[A = T \otimes I_n + (S \oplus (I_{m-1} \otimes I_n))(F \otimes I_n), \]

where \(S \) is column substochastic, \(T, F \) are nonnegative so that only the first row of \(F \) is nonzero.

If the planktonic larvae do not disperse between spatial locations, then the matrices \(S \) and \(A \) reduce to \(I_n \) and \((T + F) \otimes I_n \), respectively.
Example 2 (Planktonic dynamics) Caswell describes a stage structured and spatially structured model of Davis for planktonic species (e.g. copepods, water fleas, etc.) dispersing in ocean currents during their larval stage.

The model for the planktonic dynamics is given by

\[x(t + 1) = A x(t) \quad \text{where} \quad A = T \otimes I_n + (S \oplus (I_{m-1} \otimes I_n))(F \otimes I_n), \]

where \(S \) is column substochastic, \(T, F \) are nonnegative so that only the first row of \(F \) is nonzero.

If the planktonic larvae do not disperse between spatial locations, then the matrices \(S \) and \(A \) reduce to \(I_n \) and \((T + F) \otimes I_n \), respectively.

Claim \(\rho(A) \leq \rho((T + F) \otimes I_n) = \rho(T + F) \)

for any column substochastic matrix \(S \).
Example 2 (Planktonic dynamics) Caswell describes a stage structured and spatially structured model of Davis for planktonic species (e.g. copepods, water fleas, etc.) dispersing in ocean currents during their larval stage.

The model for the planktonic dynamics is given by

\[x(t + 1) = A x(t) \quad \text{where} \quad A = T \otimes I_n + (S \oplus (I_{m-1} \otimes I_n))(F \otimes I_n), \]

where \(S \) is column substochastic, \(T, F \) are nonnegative so that only the first row of \(F \) is nonzero.

If the planktonic larvae do not disperse between spatial locations, then the matrices \(S \) and \(A \) reduce to \(I_n \) and \((T + F) \otimes I_n \), respectively.

Claim \(\rho(A) \leq \rho((T + F) \otimes I_n) = \rho(T + F) \)

for any column substochastic matrix \(S \).

In other words, dispersal of the larva reduces the asymptotic growth rate of the population.
To prove this claim using our theorem, we need to introduce an extra variable \tilde{x}_j^0 that keeps track of the newly born larval stage. Let \tilde{x}_j^i for $i = 0, 1, \ldots, m$ and $j = 1, \ldots, n$ correspond to the abundance of life stage i in location j, $\tilde{x}^i = \left[\begin{array}{c} \tilde{x}_1^i \\ \vdots \\ \tilde{x}_n^i \end{array} \right]$, and $\tilde{x} = \left[\begin{array}{c} \tilde{x}_0^0 \\ \vdots \\ \tilde{x}_m^m \end{array} \right]$. Moreover, define

$$D = \begin{pmatrix} f_{11} & f_{11} & f_{12} & \cdots & f_{1m} \\ t_{11} & t_{11} & t_{12} & \cdots & t_{1m} \\ t_{21} & t_{21} & t_{22} & \cdots & t_{2m} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ t_{m1} & t_{m1} & t_{m2} & \cdots & t_{mm} \end{pmatrix} \otimes I_n \quad \text{and} \quad S = S \oplus (I_m \otimes I_n)$$

With the inclusion of this additional variable, the planktonic model becomes

$$\tilde{x}(t + 1) = S \, D \, \tilde{x}(t)$$
Since
\[
\begin{pmatrix}
I_n & I_n & 0_{n,n(m-1)} \\
0_{n(m-1),n} & 0_{n(m-1),n} & I_{m-1} \otimes I_n
\end{pmatrix}_{SD}
\]

\[
= A \begin{pmatrix}
I_n & I_n & 0_{n,n(m-1)} \\
0_{n(m-1),n} & 0_{n(m-1),n} & I_{m-1} \otimes I_n
\end{pmatrix},
\]

we have \(\rho(\text{SD}) = \rho(A) \). Evidently, \(S = S \oplus I_n \oplus \cdots \oplus I_n \) does not admit a polychromatic cycle. By our theorem, we have

\[\rho(A) = \rho(\text{SD}) \leq \rho(D) = \rho(T + F). \]

Thus, the desired inequality holds for any column substochastic matrix \(S \).
Further research

- Study \(S \) and/or \(D \) with special structures.

- Determine conditions on \(S \) and \(D \) so that \(\rho(SD) \leq \rho(D) \).

- For a pair of \((S, D)\), study the monotonicity behavior of \(\rho(S(t)D) \), where \(S(t) = (1 - t)I + tS \).

- Study the continuous models.
Thank you for your attention!!!