Induced operators on symmetry classes of tensors

Chi-Kwong Li
Department of Mathematics
The College of William and Mary
Williamsburg, Virginia 23187-8795
ckli@math.wm.edu

This includes joint work with
A. Zaharia (University of Toronto),
T.Y. Tam (Auburn University), and
W.S. Cheung and M. Duffner (University of Lisbon)
Introduction

V: an n-dimensional inner product space over \mathbb{C}.

$\otimes^m V$: the mth tensor space of V spanned by

$$v_1 \otimes \cdots \otimes v_m.$$

There is an induced inner product on $\otimes^m V$ such that

$$(u_1 \otimes \cdots \otimes u_m, v_1 \otimes \cdots \otimes v_m) = \prod_{i=1}^{m} (u_i, v_i).$$
Example If $V = \mathbb{C}^n$, then

$$x \otimes y = \begin{pmatrix} x_1y \\ \vdots \\ x_ny \end{pmatrix} \equiv \begin{pmatrix} x_1y^t \\ \vdots \\ x_ny^t \end{pmatrix} = xy^t.$$

$$x \otimes y \otimes z = \begin{pmatrix} x_1(y \otimes z) \\ \vdots \\ x_n(y \otimes z) \end{pmatrix} \equiv \begin{pmatrix} x_1(yz^t) \\ \vdots \\ x_n(yz^t) \end{pmatrix}.$$
Example If $V = \mathbb{C}^n$, then

$$x \otimes y = \begin{pmatrix} x_1 y \\ \vdots \\ x_n y \end{pmatrix} \equiv \begin{pmatrix} x_1 y^t \\ \vdots \\ x_n y^t \end{pmatrix} = xy^t.$$

$$x \otimes y \otimes z = \begin{pmatrix} x_1 (y \otimes z) \\ \vdots \\ x_n (y \otimes z) \end{pmatrix} \equiv \begin{pmatrix} x_1 (yz^t) \\ \vdots \\ x_n (yz^t) \end{pmatrix}.$$

If $V = M_k$ then

$$A \otimes B = (a_{ij}B) \quad \text{and} \quad A \otimes B \otimes C = (a_{ij}(B \otimes C)),$$

etc.
For any linear maps $T_j : V \to V$ for $j = 1, \ldots, m$,

$$(T_1 \otimes \cdots \otimes T_m)(v_1 \otimes \cdots \otimes v_m) = (T_1 v_1) \otimes \cdots \otimes (T_m v_m).$$

In particular, if $T : V \to V$, then

$$\otimes^m T(v_1 \otimes \cdots \otimes v_m) = (Tv_1) \otimes \cdots \otimes (Tv_m).$$
For any linear maps $T_j : V \rightarrow V$ for $j = 1, \ldots, m$,

$$(T_1 \otimes \cdots \otimes T_m)(v_1 \otimes \cdots \otimes v_m) = (T_1 v_1) \otimes \cdots \otimes (T_m v_m).$$

In particular, if $T : V \rightarrow V$, then

$$\otimes^m T(v_1 \otimes \cdots \otimes v_m) = (Tv_1) \otimes \cdots \otimes (Tv_m).$$

Example If $V = \mathbb{C}^n$, then

$$(T_1 \otimes T_2)(x \otimes y) = (T_1 x) \otimes (T_2 y) \equiv T_1 x y^t T_2^t$$

and

$$(T \otimes T)(x \otimes y) = (Tx) \otimes (Ty) \equiv T x y^t T^t.$$
Let $H < S_m$, the symmetric group of degree m. We can use the irreducible characters $\chi : H \to \mathbb{C}$ to do the following orthogonal decompositions:

(a) $\otimes^m V = \text{direct sum of the subspaces } V^m_\chi(H)$, the symmetry classes of tensors;

(b) $\otimes^m T = \text{direct sum of the induced operators } K_\chi(T)$, where $K_\chi(T) = K(T)$ acts on $V^m_\chi(H)$.
Why bother to study?

1. Symmetry class of tensors arises naturally in the study of many subjects: differential geometry, representation theory, quantum physics, operator theory, combinatorial theory,

2. It is helpful to formulate, study, and solve problems of V in terms of $\otimes^m V$ or $V^m_\chi(H)$.
Why bother to study?

1. Symmetry class of tensors arises naturally in the study of many subjects: differential geometry, representation theory, quantum physics, operator theory, combinatorial theory,

2. It is helpful to formulate, study, and solve problems of V in terms of $\otimes^m V$ or $V^m \chi(H)$.

Examples

(a) Let A and B be positive definite. Then the Hadamard product $A \circ B = (a_{ij}b_{ij})$ is positive definite.
Why bother to study?

1. Symmetry class of tensors arises naturally in the study of many subjects: differential geometry, representation theory, quantum physics, operator theory, combinatorial theory,

2. It is helpful to formulate, study, and solve problems of V in terms of $\otimes^m V$ or $V^m_\chi(H)$.

Examples

(a) Let A and B be positive definite. Then the Hadamard product $A \circ B = (a_{ij} b_{ij})$ is positive definite.

The matrix $A \circ B$ is a principal submatrix of $A \otimes B = (a_{ij} B)$, which is positive definite with minimum eigenvalue $\lambda_{\min}(A) \lambda_{\min}(B)$.
(b) Suppose μ and ν are algebraic numbers of degree p and q, resp., i.e., there are polynomials f and g of degrees p and q with integer coefficients such that $f(\mu) = 0 = g(\nu)$. Then $\mu \nu$ and $\mu + \nu$ are algebraic number of degree at most pq.
(b) Suppose μ and ν are algebraic numbers of degree p and q, resp., i.e., there are polynomials f and g of degrees p and q with integer coefficients such that $f(\mu) = 0 = g(\nu)$. Then $\mu \nu$ and $\mu + \nu$ are algebraic number of degree at most pq.

Let $A \in M_p$ and $B \in M_q$ be the companion matrices of f and g, i.e.,

$$f(z) = \det(zI_p - A) \quad \text{and} \quad g(z) = \det(zI_q - B).$$

Then $\mu \nu$ and $\mu + \nu$ are roots of the characteristic polynomials of

$$\det(zI_{pq} - A \otimes B) \quad \text{and} \quad \det(zI - (A \otimes I_q + I_p \otimes B)).$$
(b) Suppose μ and ν are **algebraic numbers** of degree p and q, resp., i.e., there are polynomials f and g of degrees p and q with integer coefficients such that $f(\mu) = 0 = g(\nu)$. Then $\mu\nu$ and $\mu + \nu$ are algebraic number of degree at most pq.

Let $A \in M_p$ and $B \in M_q$ be the companion matrices of f and g, i.e.,

$$f(z) = \text{det}(zI_p - A) \quad \text{and} \quad g(z) = \text{det}(zI_q - B).$$

Then $\mu\nu$ and $\mu + \nu$ are roots of the characteristic polynomials of

$$\text{det}(zI_{pq} - A \otimes B) \quad \text{and} \quad \text{det}(zI - (A \otimes I_q + I_p \otimes B)).$$

(c) Let A, B, C be given. Then $AX - XB = C$ is solvable if and only if C is in the range space of $L(X) = AX - XB$.
(b) Suppose μ and ν are algebraic numbers of degree p and q, resp., i.e., there are polynomials f and g of degrees p and q with integer coefficients such that $f(\mu) = 0 = g(\nu)$. Then $\mu \nu$ and $\mu + \nu$ are algebraic number of degree at most pq.

Let $A \in M_p$ and $B \in M_q$ be the companion matrices of f and g, i.e., $f(z) = \det(zI_p - A)$ and $g(z) = \det(zI_q - B)$.

Then $\mu \nu$ and $\mu + \nu$ are roots of the characteristic polynomials of $\det(zI_{pq} - A \otimes B)$ and $\det(zI - (A \otimes I_q + I_p \otimes B))$.

(c) Let A, B, C be given. Then $AX - XB = C$ is solvable if and only if C is in the range space of $L(X) = AX - XB$.

The linear map L can be viewed as $A \otimes I - I \otimes B^t$.

It is invertible if and only if A and B have no common eigenvalues.
(d) Let $A \in M_n$ have singular values $s_1 \geq \cdots \geq s_n$ and eigenvalues $\lambda_1, \ldots, \lambda_n$ such that $|\lambda_1| \geq \cdots \geq |\lambda_n|$. Then

$$|\lambda_1 \cdots \lambda_m| \leq s_1 \cdots s_m, \quad 1 \leq m < n.$$

The mth compound matrix $C_m(A) \in M_{n\choose m}$ has entries equal to the $m \times m$ minors of A arranged in lexicographic order acting on the mth exterior space.

For example, for $A \in M_3$,

$$C_2(A) = \begin{pmatrix}
M_{12,12} & M_{12,13} & M_{12,23} \\
M_{13,12} & M_{13,13} & M_{13,23} \\
M_{23,12} & M_{23,13} & M_{23,23}
\end{pmatrix}.$$

Using the fact that $|\lambda_1| \leq s_1$,

$$\lambda_1(C_m(A)) = |\lambda_1 \cdots \lambda_m| \quad \text{and} \quad s_1(C_m(A)) = s_1 \cdots s_m,$$

one gets the result.
The formal definitions

For each $\sigma \in S_m$, define $P(\sigma)$ on $\otimes^m V$:

$$P(\sigma)(v_1 \otimes \cdots \otimes v_m) = v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}$$

on the decomposable tensors $v_1 \otimes \cdots \otimes v_m$.

Let $\chi : H \to \mathbb{C}$ be an irreducible character of $H < S_m$. Then the symmetrizer

$$S_\chi := \frac{\chi(e)}{|H|} \sum_{\sigma \in H} \chi(\sigma) P(\sigma)$$

is an orthogonal projector (Hermitian idempotent).
The formal definitions

For each $\sigma \in S_m$, define $P(\sigma)$ on $\otimes^m V$:

$$P(\sigma)(v_1 \otimes \cdots \otimes v_m) = v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}$$
on the decomposable tensors $v_1 \otimes \cdots \otimes v_m$.

Let $\chi : H \to \mathbb{C}$ be an irreducible character of $H < S_m$. Then the symmetrizer

$$S_\chi := \frac{\chi(e)}{|H|} \sum_{\sigma \in H} \chi(\sigma) P(\sigma)$$
is an orthogonal projector (Hermitian idempotent).

The set $V^m_\chi(H) := S_\chi(\otimes^m V)$ is called the symmetry class of tensors over V spanned by decomposable symmetrized tensors:

$$S_\chi(v_1 \otimes \cdots \otimes v_m) = v_1 \ast \cdots \ast v_m.$$
For any $T : V \to V$, the subspace $V^m_\chi(H)$ is stable under $\otimes^m T$. Thus the induced operator

$$K(T) = K_\chi(T) = \otimes^m T|_{V^m_\chi(H)}$$

is the unique induced operator acting on $V^m_\chi(H)$ satisfying

$$K(T)v_1 \ast \cdots \ast v_m = Tv_1 \ast \cdots \ast Tv_m.$$
Examples Let $V = \mathbb{C}^n$.

(a) Consider $\otimes^2 V$. Identify $x \otimes y$ with xy^t.

For $H = S_2$, only two irreducible characters:

The **principal character** 1 and the **alternate character** ε. We have

$$\otimes^2 V \equiv M_n = S^2_1(V) \oplus S^2_\varepsilon(V),$$

where $S^2_1(V) = \text{span} \{ (uv^t + vu^t)/2 : u, v \in \mathbb{C}^n \}$ (symmetric matrices), $S^2_\varepsilon(V) = \text{span} \{ (uv^t - vu^t)/2 : u, v \in \mathbb{C}^n \}$ (skew-symmetric matrices).
Examples Let $V = \mathbb{C}^n$.

(a) Consider $\otimes^2 V$. Identify $x \otimes y$ with xy^t.

For $H = S_2$, only two irreducible characters:

The principal character 1 and the alternate character ε. We have

$$\otimes^2 V \equiv M_n = S_1^2(V) \oplus S_\varepsilon^2(V),$$

where $S_1^2(V) = \text{span} \{(uv^t + vu^t)/2 : u, v \in \mathbb{C}^n\}$ (symmetric matrices),

$S_\varepsilon^2(V) = \text{span} \{(uv^t - uv^t)/2 : u, v \in \mathbb{C}^n\}$ (skew-symmetric matrices).

For any $T : \mathbb{C}^n \to \mathbb{C}^n$, we have

$$\otimes^2 T(xy^t) = Txy^tT^t \quad \text{for all} \ x, y \in \mathbb{C}^n,$$

and

$$\otimes^2 T \equiv K_1(T) \oplus K_\varepsilon(T) = P_2(T) \oplus C_2(T).$$
(b) Let $H = S_m$ and $\chi \equiv \varepsilon$ be the alternate character.

Then $V_{\chi}^m(H)$ is the mth exterior space over \mathbb{C}^n of dimension $\binom{n}{m}$, and $K(T) = C_m(T)$ is the mth exterior power of T.

(c) Let $H = S_m$ and $\chi \equiv 1$ be the principal character.

Then $V_{\chi}^m(H)$ is the mth completely symmetric space over \mathbb{C}^n, which has dimension $\binom{m+n-1}{m}$, and $K(T) = P_m(T)$ is the mth induced power of T.

If $A \in M_n$, then $P_m(A)$ is the mth permanental compound of A with entries equal to the permanent of

$$A[i_1, \ldots, i_m; j_1, \ldots, j_m]$$

with $1 \leq i_1 \leq \cdots \leq i_m \leq n$ and $1 \leq j_1 \leq \cdots \leq j_m \leq n$.
Operator properties of T **and** $K(T)$

Theorem If T has nice (algebraic or analytic) properties, say, T is normal, unitary, positive (semi-)definite, or Hermitian, then so has $K(T)$.

Question When does the converse hold?

Good cases

If $\chi \equiv 1$, the principal character, the converses are always valid (up to a multiple).

Suppose $\chi \equiv \varepsilon$ on S_m with $m < n$.

Then $K(T)$ is unitary/scalar if and only if T is unitary/scalar;

$\eta K(T)$ is positive definite if and only if ξT is positive definite with $\xi^m = 1$.

13
Bad cases

Suppose $H = S_m$, and $T = T_1 \oplus 0$ with T_1 acting on an m-dimensional subspace such that $\det(T_1) \neq 0$. Then $C_m(T)$ is the rank one normal operator with matrix representation
\[
\text{diag}(\det(T_1), 0, \ldots, 0).
\]

So, $C_m(T)$ is Hermitian (positive semi-definite) if and only if $\det(T_1) \in \mathbb{R}$ ($\det(T_1) > 0$).

If $m = n$, then $C_m(T) = [\det(T)]$ is always normal. It is unitary if and only if $|\det(T)| = 1$; it is Hermitian if and only if
Results [Li and Zaharia, 2001], [Li and Tam, 2005]

A character \(\chi \) is of the **determinant type** if \(K(T) \equiv (\det T)^r I \) for some positive integer \(r \).

A character \(\chi \) is of the **special type** if \(K(T_1 \oplus 0) \equiv (\det T_1)^r I \oplus 0 \) for some positive integer \(r \).

Theorem Suppose \(\chi \) is not of the determinant type. Then \(K(T) \) is nonzero normal if and only if

(i) \(T \) is normal, or

(ii) \(\chi \) is of the special type, and \(T \) is unitarily similar to \(T_1 \oplus 0 \) with an invertible \(T_1 \).
Theorem Suppose χ is not of the determinant type. Then $K(T)$ is Hermitian (positive semi-definite, a multiple of Hermitian idempotent) if and only if

(i) ξT has the corresponding property for some $\xi^m = 1$, or

(ii) χ is of the special type, and T is unitarily similar to $T_1 \oplus 0$ with an invertible T_1 such that
Theorem Suppose χ is not of the determinant type. Then $K(T)$ is Hermitian (positive semi-definite, a multiple of Hermitian idempotent) if and only if

(i) ξT has the corresponding property for some $\xi^m = 1$, or

(ii) χ is of the special type, and T is unitarily similar to $T_1 \oplus 0$ with an invertible T_1 such that

Theorem Suppose χ is not of the determinant type.

(a) $K(T)$ is unitary if and only T is unitary.

(b) $K(T) = \eta I$ is a scalar if and only if $T = \xi I$ with $\xi^m = \eta$.

(c) $\eta K(T)$ is positive definite if and only if there is $\xi \in \mathbb{C}$ with $\xi^m = \eta$ such that ξT is positive definite.
A related problem

If \(T = \xi S \) for some complex number \(\xi \) with \(\xi^m = 1 \), then \(K(T) = K(S) \). But the converse may not be true.

Theorem Suppose \(\chi \) is not of the determinant type. If \(K(T) = K(S) \) is nonzero, then

(i) \(T = \xi S \) with \(\xi^m = 1 \), or

(ii) \(\chi \) is of the special type, there are unitary \(U \) and \(W \) such that \(UTW = T_1 \oplus 0 \) and \(USW = S_1 \oplus 0 \) so that \(\det(T_1)^r = \det(S_1)^r \) is nonzero.
Numerical ranges and decomposable numerical ranges

The numerical range of $T : V \to V$ is defined by

$$W(T) = \{(Tv, v) : v \in V, (v, v) = 1\}.$$
Numerical ranges and decomposable numerical ranges

The numerical range of $T : V \rightarrow V$ is defined by

$$W(T) = \{(Tv, v) : v \in V, (v, v) = 1\}.$$

It is useful in studying T. For example,

(a) $W(T)$ is always compact and convex.

(b) $\text{Sp}(T) \subseteq W(T)$.

(c) Conical points of $W(A)$ are reducing eigenvalues of T.
(d) \(T = \mu I \) if and only if \(W(T) = \{\mu\} \).

(e) \(T = T^* \) if and only if \(W(T) \subseteq \mathbb{R} \).

(f) \(T \) is positive semi-definite if and only if \(W(T) \subseteq [0, \infty) \).

(g) \(T \) is positive definite if and only if \(W(T) \subseteq (0, \infty) \).

(h) \(T \) is unitary if and only if \(W(T) \subseteq \mathcal{D} \) and \(\text{Sp}(T) \subseteq \partial \mathcal{D} \), where \(\mathcal{D} = \{\mu \in \mathbb{C} : |\mu| \leq 1\} \).
The decomposable numerical range of $T : V \rightarrow V$ is defined by

$$W_{\chi}(T) = \{(K(T)v^*, v^*) : v^* = v_1 \cdots v_m \text{ has unit length}\}.$$

Since not all unit vectors in $V_{\chi}^m(H)$ are decomposable,

$$W_{\chi}(T) \subseteq W(K(T))$$

and the equality does not hold in general.
The decomposable numerical range of $T : V \to V$ is defined by

$$W_{\chi}(T) = \{ (K(T)v^*, v^*) : v^* = v_1 \cdots v_m \text{ has unit length} \}.$$

Since not all unit vectors in $V^m_\chi(H)$ are decomposable,

$$W_{\chi}(T) \subseteq W(K(T))$$

and the equality does not hold in general.

Basic properties

(a) Compactness. Yes.

(b) Convexity. No in general.

(c) $\text{Sp}(K(T)) \subseteq W_{\chi}(T)$. Yes.

(d) In some cases, conical points of $W_{\chi}(T)$ are eigenvalues of $K(T)$.
Question Can we deduce properties of T from $W_\chi(T)$?

[Li and Zaharia, 2001]

Theorem Suppose χ is a linear irreducible character. Then

(e) $W_\chi(T) = \{\eta\}$ if and only if $T = \xi I$ with $\xi^m = \eta$;

(f) $\eta W_\chi(T) \subseteq (0, \infty)$ if and only if ξT is positive definite for some ξ with $\xi^m = \eta$;

(g) $W_\chi(T) \subseteq \mathbb{D}$ and $\text{Sp}(K(T)) \subseteq \partial \mathbb{D}$ if and only if T is unitary.

(h) $\eta W_\chi(T) \subseteq \mathbb{R}$ if and only if ξT is self-adjoint for some ξ with $\xi^m = \pm \eta$ or χ is of the special type and T is unitarily similar to $T_1 \oplus 0$
The proofs used heavily the induced matrix structure of $K(A)$ for $A \in M_n$ if χ is a linear irreducible character.
The proofs used heavily the induced matrix structure of $K(A)$ for $A \in M_n$ if χ is a linear irreducible character.

Open problem What happen for non-linear characters $\chi : H \to \mathbb{C}$?

Need some new ideas and techniques.
Inequalities

Consider the spectral norm $\|T\| = s_1(T)$,

the numerical radius $r(T) = \max\{|\mu| : \mu \in W(T)\},$

and the spectral radius $\rho(T) = \max\{|\mu| : \mu \in \text{Sp}(T)\}$.

Then

$$|\det(T)|^{1/n} \leq \rho(T) \leq r(T) \leq \|T\| \leq 2r(T).$$

Equality cases may lead to nice algebraic structure of T.

Theorem T is a multiple of a unitary operator if and only if

$$|\det(T)|^{1/n} = f(T)$$

for $f(T) = r(T)$ or $\|T\|$.
Question Are there similar results for induced operators?

We have

\[|\det(T)|^{m/n} \leq \rho(K(T)) \leq r_\chi(T) \leq r(K(T)) \leq \|K(T)\|. \]

[Li and Zaharia, 2001] used induced matrices to obtain results for \(K_\chi(T) \) when \(\chi \) is a linear irreducible character.

Theorem Suppose \(\chi \) is a linear irreducible character not of the determinant type. An operator \(T \) is a multiple of a unitary operator if and only if \(\rho(K(A)) = f(A) \) for \(f(A) = r_\chi(A), r(K(A)) \) and \(\|K(A)\| \).

Not many results for non-linear characters are available yet.
Preserver problems

Let $F(A)$ be a function on $A \in M_n$. We are interested in studying the structure of maps ϕ such that $F(\phi(X)) = F(X)$ for all $X \in M_n$.

(a) linear preservers of $\det(A)$ has the form

$$\phi(X) = MXN \text{ or } \phi(X) = MX^tN, \det(MN) = 1.$$

(b) linear preservers of $\text{Sp}(A)$ has the form

$$\phi(X) = SXS^{-1} \text{ or } \phi(X) = SX^tS^{-1}, S \text{ invertible}.$$

(c) linear preservers of $W(A)$ has the form

$$\phi(X) = UXU^* \text{ or } \phi(X) = UX^tU^*, U \text{ unitary}.$$
(d) linear preservers of $\|A\|$ has the form

$$\phi(X) = U XV \text{ or } \phi(X) = U X^t V, \text{ } U \text{ and } V \text{ are unitary.}$$

(e) linear preservers of $r(A)$ has the form

$$\phi(X) = \mu UXU^* \text{ or } \phi(X) = \mu UXU^*, \text{ } |\mu| = 1, \text{ } U \text{ unitary.}$$

(f) linear preservers of $\rho(A)$, $|\det(A)|$, etc. has the form

$$\ldots$$
There are also results for multiplicative preservers of
\[\text{det}(A), \text{Sp}(A), W(A), \|A\|, r(A), \rho(A), |\text{det}(A)|. \]

[Li and Zaharia, 2001] and [Cheung, Duffner, and Li, 2005] have obtained results of linear and multiplicative preservers of

\[\text{Sp}(K(A)), W_\chi(A), \|K(A)\|, r(K(A)), r_\chi(A), \rho(K(A)) \]

for linear irreducible characters. The preservers are often just \(\xi \) multiple of the standard form with \(\xi^m = 1 \).
There are also results for multiplicative preservers of
\[\det(A), \text{Sp}(A), W(A), \|A\|, r(A), \rho(A), |\det(A)|. \]

[Li and Zaharia, 2001] and [Cheung, Duffner, and Li, 2005] have obtained results of linear and multiplicative preservers of
\[\text{Sp}(K(A)), W_{\chi}(A), \|K(A)\|, r(K(A)), r_{\chi}(A), \rho(K(A)) \]
for linear irreducible characters. The preservers are often just \(\xi \) multiple of the standard form with \(\xi^m = 1 \).

Open problem What happen for non-linear characters?

Open problem How about general preservers?
There are also results for multiplicative preservers of

\[\text{det}(A), \text{Sp}(A), W(A), \|A\|, r(A), \rho(A), |\text{det}(A)|. \]

[Li and Zaharia, 2001] and [Cheung, Duffner, and Li, 2005] have obtained results of \textit{linear} and \textit{multiplicative} preservers of

\[\text{Sp}(K(A)), W_\chi(A), \|K(A)\|, r(K(A)), r_\chi(A), \rho(K(A)) \]

for linear irreducible characters. The preservers are often just \(\xi \) multiple of the standard form with \(\xi^m = 1 \).

Open problem What happen for non-linear characters?

Open problem How about general preservers?

There are many other challenging / interesting problems. Any help would be welcome!
Thank you for your attention!