Optimal Parameter in
Hermitian and Skew-Hermitian Splitting Method
for Certain Two-by-Two Block Matrices

Chi-Kwong Li
Department of Mathematics
The College of William and Mary
Williamsburg, Virginia 23187-8795
ckli@math.wm.edu

Joint Work with
Zhong-Zhi Bai (Chinese Academy of Science),
and Gene Golub (Stanford University)
The HSS Iteration

Let $A = H + S \in \mathbb{C}^{n \times n}$ be a sparse matrix, where

$$H = (A + A^*)/2 \quad \text{and} \quad S = (A - A^*)/2,$$

so that H is positive definite and $S \neq 0$. To solve the linear system

$$Ax = b,$$

consider the following HSS (Hemitian and Skew-Hermitian Spliting) iteration scheme proposed in [Bai,Golub,Ng, 2003].
The HSS Iteration

Let \(A = H + S \in \mathbb{C}^{n \times n} \) be a sparse matrix, where

\[
H = (A + A^*)/2 \quad \text{and} \quad S = (A - A^*)/2,
\]

so that \(H \) is positive definite and \(S \neq 0 \). To solve the linear system

\[
Ax = b,
\]

consider the following HSS (Hemitian and Skew-Hermitian Spliting) iteration scheme proposed in [Bai, Golub, Ng, 2003].

Given an initial guess \(x^{(0)} \in \mathbb{C}^n \), compute \(x^{(k)} \) for \(k = 0, 1, 2, \ldots \) using the following iteration scheme until \(\{x^{(k)}\} \) satisfies the stopping criterion:

\[
\begin{cases}
(\alpha I + H)x^{(k+\frac{1}{2})} = (\alpha I - S)x^{(k)} + b, \\
(\alpha I + S)x^{(k+1)} = (\alpha I - H)x^{(k+\frac{1}{2})} + b,
\end{cases}
\]

where \(\alpha \) is a given positive constant.
In matrix-vector form, we have

\[x^{(k+1)} = M(\alpha)x^{(k)} + b(\alpha), \quad k = 0, 1, 2, \ldots, \]

(1)

where

\[b(\alpha) = 2\alpha(\alpha I + S)^{-1}(\alpha I + H)^{-1}b \]

and

\[M(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S) \]

(2)

is the iteration matrix of the HSS method.
In matrix-vector form, we have

\[x^{(k+1)} = \mathcal{M}(\alpha)x^{(k)} + b(\alpha), \quad k = 0, 1, 2, \ldots, \]

(1)

where

\[b(\alpha) = 2\alpha(\alpha I + S)^{-1}(\alpha I + H)^{-1}b \]

and

\[\mathcal{M}(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S) \]

(2)

is the iteration matrix of the HSS method.

Note that (1) may also result from the splitting

\[A = B(\alpha) - C(\alpha) \]

of the coefficient matrix \(A \), with

\[\begin{cases}
B(\alpha) &= \frac{1}{2\alpha}(\alpha I + H)(\alpha I + S), \\
C(\alpha) &= \frac{1}{2\alpha}(\alpha I - H)(\alpha I - S).
\end{cases} \]
The HSS scheme always converges because the iteration matrix

\[M(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S) \]
The HSS scheme always converges because the iteration matrix
\[M(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S) \]

and the matrix
\[\tilde{M}(\alpha) = (\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)(\alpha I + S)^{-1} \]

have the same eigenvalues.
The HSS scheme always converges because the iteration matrix
\[
\mathcal{M}(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)
\]
and the matrix
\[
\widetilde{\mathcal{M}}(\alpha) = (\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)(\alpha I + S)^{-1}
\]
have the same eigenvalues.

Furthermore, \(\widetilde{\mathcal{M}}(\alpha)\) has singular values
\[
\frac{1 - \lambda_j(H)}{1 + \lambda_j(H)}, \quad j = 1, \ldots, n.
\]
So, the spectral radius \(\rho(\mathcal{M}(\alpha)) = \rho(\widetilde{\mathcal{M}}(\alpha))\) is bounded above by
\[
\|\widetilde{\mathcal{M}}(\alpha)\| < 1.
\]
The HSS scheme always converges because the iteration matrix
\[
\mathcal{M}(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)
\]
and the matrix
\[
\tilde{\mathcal{M}}(\alpha) = (\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)(\alpha I + S)^{-1}
\]
have the same eigenvalues.

Furthermore, \(\tilde{\mathcal{M}}(\alpha) \) has singular values
\[
\frac{1 - \lambda_j(H)}{1 + \lambda_j(H)}, \quad j = 1, \ldots, n.
\]
So, the spectral radius \(\rho(\mathcal{M}(\alpha)) = \rho(\tilde{\mathcal{M}}(\alpha)) \) is bounded above by
\[
\|\tilde{\mathcal{M}}(\alpha)\| < 1.
\]

Problem How to find the optimal \(\alpha^* \) so that
\[
\rho(\mathcal{M}(\alpha^*)) \leq \rho(\mathcal{M}(\alpha)) \quad \text{for all } \alpha > 0.
\]
Let λ_1 and λ_2 be the maximum and minimum eigenvalues of H. If $\tilde{\alpha} = \sqrt{\lambda_1 \lambda_2}$, then
\[
\frac{\sqrt{\lambda_1} - \sqrt{\lambda_2}}{\sqrt{\lambda_1} + \sqrt{\lambda_2}} = \|\tilde{M}(\tilde{\alpha})\| \leq \|\tilde{M}(\alpha)\|, \quad \alpha > 0.
\]

Thus,
\[
\rho(\mathcal{M}(\alpha^*)) \leq \rho(\mathcal{M}(\tilde{\alpha})) \leq \frac{\sqrt{\lambda_1} - \sqrt{\lambda_2}}{\sqrt{\lambda_1} + \sqrt{\lambda_2}}.
\]

In most situations,
\[
\rho(\mathcal{M}(\alpha^*)) \ll \frac{\sqrt{\lambda_1} - \sqrt{\lambda_2}}{\sqrt{\lambda_1} + \sqrt{\lambda_2}}.
\]
Let λ_1 and λ_2 be the maximum and minimum eigenvalues of H. If $\tilde{\alpha} = \sqrt{\lambda_1 \lambda_2}$, then

$$\frac{\sqrt{\lambda_1} - \sqrt{\lambda_2}}{\sqrt{\lambda_1} + \sqrt{\lambda_2}} = \| \tilde{M}(\tilde{\alpha}) \| \leq \| \tilde{M}(\alpha) \|, \quad \alpha > 0.$$

Thus,

$$\rho(M(\alpha^*)) \leq \rho(M(\tilde{\alpha})) \leq \frac{\sqrt{\lambda_1} - \sqrt{\lambda_2}}{\sqrt{\lambda_1} + \sqrt{\lambda_2}}.$$

In most situations,

$$\rho(M(\alpha^*)) \ll \frac{\sqrt{\lambda_1} - \sqrt{\lambda_2}}{\sqrt{\lambda_1} + \sqrt{\lambda_2}}.$$

Problem Can we do better?
The two-by-two real case

Theorem 1 Let \(A = H + S \in \mathbb{R}^{2 \times 2} \) be such that \(H \) is symmetric positive definite and \(S \) is skew-symmetric. Suppose \(H \) has eigenvalues \(\lambda_1 \geq \lambda_2 > 0 \) and \(\det(S) = q^2 \) with \(q \in \mathbb{R} \). Then the two eigenvalues of the iteration matrix \(M(\alpha) \) are

\[
\lambda_{\pm} = \frac{(\alpha^2 - \lambda_1 \lambda_2)(\alpha^2 - q^2) \pm \sqrt{\Delta(\alpha)}}{(\alpha + \lambda_1)(\alpha + \lambda_2)(\alpha^2 + q^2)},
\]

where

\[
\Delta(\alpha) = (\alpha^2 - \lambda_1 \lambda_2)^2(\alpha^2 - q^2)^2 - (\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2)(\alpha^2 + q^2)^2.
\]
The two-by-two real case

Theorem 1 Let \(A = H + S \in \mathbb{R}^{2 \times 2} \) be such that \(H \) is symmetric positive definite and \(S \) is skew-symmetric. Suppose \(H \) has eigenvalues \(\lambda_1 \geq \lambda_2 > 0 \) and \(\det(S) = q^2 \) with \(q \in \mathbb{R} \). Then the two eigenvalues of the iteration matrix \(M(\alpha) \) are

\[
\lambda_{\pm} = \frac{(\alpha^2 - \lambda_1 \lambda_2)(\alpha^2 - q^2) \pm \sqrt{\Delta(\alpha)}}{(\alpha + \lambda_1)(\alpha + \lambda_2)(\alpha^2 + q^2)},
\]

where

\[
\Delta(\alpha) = (\alpha^2 - \lambda_1 \lambda_2)^2(\alpha^2 - q^2)^2 - (\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2)(\alpha^2 + q^2)^2.
\]

As a result,

\[
\rho(M(\alpha)) = \begin{cases}
\left| (\alpha^2 - \lambda_1 \lambda_2)(\alpha^2 - q^2) \right| + \sqrt{\Delta(\alpha)} & \text{if } \Delta(\alpha) \geq 0; \\
\sqrt{(\alpha - \lambda_1)(\alpha - \lambda_2)} & \text{if } \Delta(\alpha) < 0.
\end{cases}
\]
Proof. Apply an orthogonal similarity, and assume that

\[H = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 0 & q \\ -q & 0 \end{bmatrix} \quad \text{with} \ q \in \mathbb{R}. \]

Then \((\alpha I + H)^{-1}(\alpha I - H)(\alpha I + S)^{-1}(\alpha I - S)\) equals

\[
\frac{1}{\alpha^2 + q^2} \cdot \begin{bmatrix}
\frac{(\alpha^2 - q^2)(\alpha - \lambda_1)}{\alpha + \lambda_1} & -\frac{2q\alpha(\alpha - \lambda_1)}{\alpha + \lambda_1} \\
\frac{2q\alpha(\alpha - \lambda_2)}{\alpha + \lambda_2} & \frac{(\alpha^2 - q^2)(\alpha - \lambda_2)}{\alpha + \lambda_2}
\end{bmatrix}.
\]

The formula for \(\lambda_{\pm}\) and the assertion on \(\rho(M(\alpha))\) follow. \(\square\)
One may want to use the formula of $\rho(\mathcal{M}(\alpha))$ in Theorem 1 to determine the optimal choice of α. It turns out that the analysis is very complicated and not productive. The main difficulty is the expression

$$\sqrt{\Delta(\alpha)} = \sqrt{(\alpha^2 - \lambda_1 \lambda_2)^2(\alpha^2 - q^2)^2 - (\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2)(\alpha^2 + q^2)^2}$$

in the formula of $\rho(\mathcal{M}(\alpha))$.
One may want to use the formula of $\rho(\mathcal{M}(\alpha))$ in Theorem 1 to determine the optimal choice of α. It turns out that the analysis is very complicated and not productive. The main difficulty is the expression

$$\sqrt{\Delta(\alpha)} = \sqrt{(\alpha^2 - \lambda_1 \lambda_2)^2(\alpha^2 - q^2)^2 - (\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2)(\alpha^2 + q^2)^2} \quad (3)$$

in the formula of $\rho(\mathcal{M}(\alpha))$.

Here, we use a different approach that allows us to avoid the complicated expression (3). The key idea is:
One may want to use the formula of $\rho(\mathcal{M}(\alpha))$ in Theorem 1 to determine the optimal choice of α. It turns out that the analysis is very complicated and not productive. The main difficulty is the expression

$$\sqrt{\Delta(\alpha)} = \sqrt{(\alpha^2 - \lambda_1 \lambda_2)^2(\alpha^2 - q^2)^2 - (\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2)(\alpha^2 + q^2)^2} \quad (3)$$

in the formula of $\rho(\mathcal{M}(\alpha))$.

Here, we use a different approach that allows us to avoid the complicated expression (3). The key idea is:

If X has eigenvalues γ_1, γ_2 then $\rho(X) = \max\{\vert\gamma_1\vert, \vert\gamma_2\vert\}$ so that

$$\rho(X) \geq \vert(\gamma_1 + \gamma_2)/2\vert = \vert(\text{tr } X)/2\vert$$

and

$$\rho(X)^2 \geq \vert\gamma_1 \gamma_2\vert = \vert\det(X)\vert.$$
For notational simplicity, write

\[\rho(\alpha) = \rho(M(\alpha)), \]

\[\tau(\alpha) = \left\{ \frac{\text{trace}(M(\alpha))}{2} \right\}^2 = \left\{ \frac{(\alpha^2 - q^2)(\alpha^2 - \lambda_1 \lambda_2)}{(\alpha^2 + q^2)(\alpha + \lambda_1)(\alpha + \lambda_2)} \right\}^2, \]

\[\delta(\alpha) = |\det(M(\alpha))| = \left| \frac{(\alpha - \lambda_1)(\alpha - \lambda_2)}{(\alpha + \lambda_1)(\alpha + \lambda_2)} \right|, \]

and

\[\omega(\alpha) = \max\{\tau(\alpha), \delta(\alpha)\}. \]

Then

\[\rho(\alpha)^2 \geq \omega(\alpha). \]
Note that
\[1 = \tau(0) = \lim_{\alpha \to +\infty} \tau(\alpha) \quad \text{and} \quad 1 = \delta(0) = \lim_{\alpha \to +\infty} \delta(\alpha). \]
Thus,
\[\lim_{\alpha \to +\infty} \omega(\alpha) = \omega(0) = 1 > \omega(\xi) \quad \text{for all} \ \xi > 0. \]
Since \(\omega(\alpha) \) is continuous and nonnegative, there exists \(\alpha^* > 0 \) such that
\[\omega(\alpha^*) = \min\{\omega(\alpha) : \alpha > 0\}. \]
Note that
\[1 = \tau(0) = \lim_{\alpha \to +\infty} \tau(\alpha) \quad \text{and} \quad 1 = \delta(0) = \lim_{\alpha \to +\infty} \delta(\alpha). \]
Thus,
\[\lim_{\alpha \to +\infty} \omega(\alpha) = \omega(0) = 1 > \omega(\xi) \quad \text{for all } \xi > 0. \]
Since \(\omega(\alpha) \) is continuous and nonnegative, there exists \(\alpha^* > 0 \) such that
\[\omega(\alpha^*) = \min\{\omega(\alpha) : \alpha > 0\}. \]

We show that
\[\tau(\alpha^*) = \delta(\alpha^*). \quad (4) \]
Note that
\[1 = \tau(0) = \lim_{\alpha \to +\infty} \tau(\alpha) \quad \text{and} \quad 1 = \delta(0) = \lim_{\alpha \to +\infty} \delta(\alpha). \]
Thus,
\[\lim_{\alpha \to +\infty} \omega(\alpha) = \omega(0) = 1 > \omega(\xi) \quad \text{for all} \ \xi > 0. \]
Since \(\omega(\alpha) \) is continuous and nonnegative, there exists \(\alpha^* > 0 \) such that
\[\omega(\alpha^*) = \min\{\omega(\alpha) : \alpha > 0\}. \]

We show that
\[\tau(\alpha^*) = \delta(\alpha^*). \quad (4) \]

As a result, the eigenvalues of \(M(\alpha^*) \) have the same modulus, and thus
\[\rho(\alpha)^2 \geq \omega(\alpha) \geq \omega(\alpha^*) = \rho(\alpha^*)^2, \quad \text{for all} \ \alpha > 0. \]
Theorem 2 Let the assumptions of Theorem 1 be satisfied and define the functions \(\tau \) and \(\delta \) as above. Then the optimal \(\alpha^* > 0 \) satisfying

\[
\rho(M(\alpha^*)) = \min\{\rho(M(\alpha)) : \alpha > 0\}
\]

lies in the finite set

\[
S = \{\alpha > 0 : \tau(\alpha) = \delta(\alpha)\},
\]

which consists of numbers \(\alpha > 0 \) satisfying

\[
(\alpha^2 + q^2)^2(\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2 \quad (5)
\]
or

\[
(\alpha^2 + q^2)^2(\lambda_1^2 - \alpha^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2. \quad (6)
\]
Theorem 2 Let the assumptions of Theorem 1 be satisfied and define the functions \(\tau \) and \(\delta \) as above. Then the optimal \(\alpha^* > 0 \) satisfying
\[
\rho(\mathcal{M}(\alpha^*)) = \min\{\rho(\mathcal{M}(\alpha)) : \alpha > 0\}
\]
lies in the finite set
\[
S = \{\alpha > 0 : \tau(\alpha) = \delta(\alpha)\},
\]
which consists of numbers \(\alpha > 0 \) satisfying
\[
(\alpha^2 + q^2)^2(\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1\lambda_2)^2 \tag{5}
\]
or
\[
(\alpha^2 + q^2)^2(\lambda_1^2 - \alpha^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1\lambda_2)^2. \tag{6}
\]

Proof. Two pages of detailed analysis. \(\square \)
Theorem 2 Let the assumptions of Theorem 1 be satisfied and define the functions \(\tau \) and \(\delta \) as above. Then the optimal \(\alpha^* > 0 \) satisfying

\[
\rho(M(\alpha^*)) = \min\{\rho(M(\alpha)) : \alpha > 0\}
\]

lies in the finite set

\[
S = \{\alpha > 0 : \tau(\alpha) = \delta(\alpha)\},
\]

which consists of numbers \(\alpha > 0 \) satisfying

\[
(\alpha^2 + q^2)^2(\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2 \quad (5)
\]

or

\[
(\alpha^2 + q^2)^2(\lambda_1^2 - \alpha^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2. \quad (6)
\]

Proof. Two pages of detailed analysis. \(\square \)

Remark Use the substitution \(\beta = \alpha^2 \) in (5) and (6) to get degree two/three polynomial equations!
Applications to two-by-two block matrices

Theorem 3 Suppose \(A = H + S \in \mathbb{C}^{n \times n} \) such that
\[
H = \frac{1}{2}(A + A^*) = \begin{bmatrix} \lambda_1 I_r & 0 \\ 0 & \lambda_2 I_s \end{bmatrix} \quad \text{and} \quad S = \frac{1}{2}(A - A^*) = \begin{bmatrix} 0 & E \\ -E^* & 0 \end{bmatrix},
\]
where \(\lambda_1 > \lambda_2 > 0 \), and the nonzero matrix \(E \in \mathbb{C}^{r \times s} \) has nonzero singular values \(q_1 \geq q_2 \geq \cdots \geq q_k \). Then the spectral radius of the iteration matrix
\[
\mathcal{M}(\alpha) = (\alpha I + S)^{-1}(\alpha I - H)(\alpha I + H)^{-1}(\alpha I - S)
\]
attains the minimum at \(\alpha^* \), which is \(\sqrt{\lambda_1 \lambda_2}, \sqrt{q_1 q_k} \), or a root of one of the following equations:
\[
(\alpha^2 + q_j^2)^2(\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q_j^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2
\]
or
\[
(\alpha^2 + q_j^2)^2(\lambda_1^2 - \alpha^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q_j^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2,
\]
where \(j = 1, k \).
Estimation of optimal parameters for n-by-n matrices

In general, for a nonsymmetric and positive definite system of linear equations $Ax = b$, the eigenvalues of its coefficient matrix A lies in

$$D = \{x + iy : \lambda_1 \geq x \geq \lambda_2, -q \leq y \leq q\},$$

where λ_1 and λ_2 are the largest and the smallest eigenvalues of H, and q is the largest module of the eigenvalues of the skew-Hermitian part S, of the coefficient matrix A.
Estimation of optimal parameters for n-by-n matrices

In general, for a nonsymmetric and positive definite system of linear equations $Ax = b$, the eigenvalues of its coefficient matrix A lies in

$$D = \{ x + iy : \lambda_1 \geq x \geq \lambda_2, -q \leq y \leq q \},$$

where λ_1 and λ_2 are the largest and the smallest eigenvalues of H, and q is the largest module of the eigenvalues of the skew-Hermitian part S, of the coefficient matrix A.

A reduced (simpler and lower-dimensional) matrix A_R whose eigenvalues possess the same contour as the domain D is used to approximate the matrix A. For instance, a simple choice of the reduced matrix is given by

$$A_R = \begin{bmatrix} \lambda_1 & q \\ -q & \lambda_2 \end{bmatrix} \quad \text{with} \quad q = \|S\| \quad \text{or} \quad q = \rho(H^{-1}S)\sqrt{\lambda_1\lambda_2}.$$

We then use our results to estimate the optimal parameter α^* of the HSS iteration method as follows.
Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix, and $H, S \in \mathbb{R}^{n \times n}$ be its symmetric and skew-symmetric parts, respectively. Let λ_1 and λ_2 be the largest and smallest eigenvalues of H. Suppose $q = \|S\| \quad \text{or} \quad q = \rho(H^{-1}S)\sqrt{\lambda_1 \lambda_2}$.

Then one can use the positive roots of the equation

$$(\alpha^2 + q^2)^2(\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2$$

or

$$(\alpha^2 + q^2)^2(\lambda_1^2 - \alpha^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2$$

to estimate the optimal parameter $\alpha^* > 0$ satisfying

$$\rho(M(\alpha^*)) = \min\{\rho(M(\alpha)) : \alpha > 0\}.$$
Eestimation Let $A \in \mathbb{R}^{n \times n}$ be a positive definite matrix, and $H, S \in \mathbb{R}^{n \times n}$ be its symmetric and skew-symmetric parts, respectively. Let λ_1 and λ_2 be the largest and smallest eigenvalues of H. Suppose

$$q = \|S\| \quad \text{or} \quad q = \rho(H^{-1}S)\sqrt{\lambda_1 \lambda_2}.$$

Then one can use the positive roots of the equation

$$(\alpha^2 + q^2)^2(\alpha^2 - \lambda_1^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2$$

or

$$(\alpha^2 + q^2)^2(\lambda_1^2 - \alpha^2)(\alpha^2 - \lambda_2^2) = (\alpha^2 - q^2)^2(\alpha^2 - \lambda_1 \lambda_2)^2$$

to estimate the optimal parameter $\alpha^* > 0$ satisfying

$$\rho(M(\alpha^*)) = \min\{\rho(M(\alpha)) : \alpha > 0\}.$$

Numerical examples were given to illustrate that the estimations are useful.
Further research

Determine the optimal parameters for other classes of matrices A.
Further research

Determine the optimal parameters for other classes of matrices A.

Thank you for your attention!!!