Stability of an equilibrium point:

Suppose that $y = y_0$ is an equilibrium point of y' = f(y).

 y_0 is a **sink** if any solution with initial condition close to y_0 tends toward y_0 as t increase.

 y_0 is a **source** if any solution with initial condition close to y_0 tends toward y_0 as t decrease.

 y_0 is a **node** if it is neither a sink nor a source.

Linearization Theorem:

Suppose that $y = y_0$ is an equilibrium point of y' = f(y).

- if $f'(y_0) < 0$, then y_0 is a sink;
- if $f'(y_0) > 0$, then y_0 is a source;
- if $f'(y_0) = 0$, then y_0 can be any type, but in addition
 - if $f''(y_0) > 0$ or $f''(y_0) < 0$, then y_0 is a node.

Bifurcation: Suppose that the differential equation depends on a parameter. Then we say that a bifurcation occurs if there is a qualitative change in the behavior of solutions as the parameter changes.

Example 1:
$$\frac{dy}{dt} = ky(1-y)$$
 (no bifurcation)

Example 2:
$$\frac{dy}{dt} = y^2 - \mu$$
 (saddle-node bifurcation, supercritical)

Example 3:
$$\frac{dy}{dt} = y^3 + \mu y$$
 (pitchfork bifurcation, subcritical)

Example 4:
$$\frac{dy}{dt} = y^2 - \mu y$$
 (transcritical bifurcation)

Example 5: Constant yield harvesting

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - h$$

Mathematical Analysis:

1. Nondimensionalization: $u = \frac{P}{N}, s = kt$,

$$\frac{du}{dt} = u(1-u) - H, \quad H = \frac{h}{kN}$$

- 2. <u>Bifurcation</u>: a subcritical saddle-node bifurcation occurs at H=0.25, or h=0.25kN.
- 3. Qualitative analysis: when 0 < H < 0.25, H = 0.25 and H > 0.25.
- 4. Analytic method: solve the equation? (see homework)

Example 5 (Cont.): Constant yield harvesting

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - h$$

Biological interpretation:

- 1. When 0 < H < 0.25, there are two equilibrium points $P_1 > P_2 > 0$; for $P(0) > P_2$, $\lim_{t \to \infty} P(t) = P_1$ and for $0 < P(0) < P_2$, P(t) < 0 for $t > t_0$; P_1 is smaller than N, that means the carrying capacity decreases because of harvesting; the behavior of solutions with $P(0) > P_2$ is similar to that of logistic equation; if the initial population is less than P_2 , then the population becomes extinct in finite time.
- 2. When H > 0.25, there is no equilibrium points, and for any initial population, the population becomes extinct in finite time.
- 3. H = 0.25 or h = 0.25kN is called <u>Maximum Sustainable Yield</u> (MSY).

Example 6: Constant effort harvesting

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - hP$$

Mathematical Analysis:

1. Nondimensionalization: $u = \frac{P}{N}, s = kt$,

$$\frac{du}{dt} = u(1-u) - Hu, \quad H = \frac{h}{kN}$$

- 2. Bifurcation: no bifurcation if we assume that 0 < H < 1
- 3. A different question: for which H, we can get the maximum yield Hu?