Problem Set 3
Recurrent Sequences (and some Pigeonhole principle)
Discussion: Oct. 5th, 2004

A recurrent sequence \(\{x_n\} \) is defined as
\[
x_{n+k} = f(x_n, x_{n+1}, x_{n+2}, \ldots, x_{n+k-1}), \quad x_0 = a_0, \ x_1 = a_1, \ldots, \ x_{k-1} = a_{k-1}.
\]
(1) is also called a difference equation. The number \(k \) is the order of the equation (or relation). A \(k \)-th order linear recurrent sequence is generated by a linear equation:
\[
x_{n+k} = b_n x_n + b_{n+1} x_{n+1} + b_{n+2} x_{n+2} + \cdots + b_{n+k-1} x_{n+k-1},
\]
\[
x_0 = a_0, \ x_1 = a_1, \ldots, \ x_{k-1} = a_{k-1}.
\]
(2)

The most common ones are first order recurrent sequence:
\[
x_{n+1} = f(n, x_n), \ x_0 = a_0,
\]
(3) or second order recurrent sequence:
\[
x_{n+2} = f(n, x_n, x_{n+1}), \ x_0 = a_0, \ x_1 = a_1.
\]
(4)

An autonomous first order recurrent sequence:
\[
x_{n+1} = f(x_n), \ x_0 = a_0,
\]
(5) is also often called a map. The theory of linear recurrent sequence is very similar to that of linear ordinary differential equation. For example, a second order linear recurrent sequence:
\[
x_{n+2} = Ax_n + Bx_{n+1}, \ x_0 = a_0, \ x_1 = a_1.
\]
(6)

The solution is given by
\[
x_n = c_1 \lambda_1^n + c_2 \lambda_2^n,
\]
(7) where \(\lambda_1 \) and \(\lambda_2 \) are the roots of quadratic characteristic equation \(\lambda^2 = A\lambda + B \), and \(c_1 \), \(c_2 \) are to be determined by the initial conditions. This is similar to the solution of second order differential equation:
\[
y'' = Ay' + By, \ y(0) = a_0, \ y'(0) = a_1,
\]
(8) for which the solution is
\[
y(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t},
\]
(9) where \(\lambda_1 \) and \(\lambda_2 \) are the roots of quadratic characteristic equation \(\lambda^2 = A\lambda + B \).
Exercises:
1. Find general solution of 1st order equation: \(x_{n+1} = Ax_n \), \(x_0 = a_0 \);
2. Find general solution of 1st order equation: \(x_{n+1} = Ax_n + C \), \(x_0 = a_0 \);
3. Find general solution of 2nd order equation: \(x_{n+2} = Ax_{n+1} + Bx_n + C \), \(x_0 = a_0 \), \(x_1 = a_1 \);
4. Find the solution of Fibonacci sequence: \(x_{n+2} = x_{n+1} + x_n \), \(x_0 = x_1 = 1 \).

Since linear autonomous recurrent equations always have solution formulas, most problems in mathematics competitions are either non-autonomous or nonlinear. However the methods for linear equation are still very useful, and sometimes non-autonomous or nonlinear maybe reduced to linear autonomous equation via certain smart change of variables. In general there is no explicit solution formula for non-autonomous or nonlinear equation, even for a simple equation like \(x_{n+1} = Ax_n(1-x_n) \) (Logistic equation). Indeed the solutions of logistic equation are chaotic when the parameter \(A \) is large. (If you have the textbook of Math 302 (Blanchard-Devaney-Hall: Differential Equations), Chapter 8 of that book has a good introduction for logistic equation.)

For the 1st order nonlinear autonomous recurrent equation \(x_{n+1} = f(x_n) \), a fixed point \(x \) is the one satisfying \(x = f(x) \). Note that for such equation, \(x_{n+1} = f^n(x_0) \), where \(f^n(y) = f(f^{n-1}(y)) \). So it is also often called iterated sequence. A fixed point \(x \) is attracting if \(f^n(y) \to x \) for all \(y \) near \(x \), and it is repelling if \(f^n(y) \) goes away from \(x \) for all \(y \) near \(x \). (There are also fixed point neither attracting nor repelling.) A fixed point \(x \) is attracting if \(|f'(x)| < 1 \), and it is repelling if \(|f'(x)| > 1 \). The iterated sequence ca be drawn in \(x-y \) coordinate system with so-called web diagram.

Finally, one can have a system of difference equation:

\[
\begin{align*}
x_{n+1} &= Ax_n + By_n, \quad y_{n+1} = Cx_n + Dy_n,
\end{align*}
\]

and the solution is given in a form \((x_n, y_n) = (c_1, c_2)\lambda_1^n + (c_3, c_4)\lambda_2^n \), and \(\lambda_1, \lambda_2 \) are the eigenvalues of the matrix

\[
\begin{pmatrix}
A & B \\
C & D
\end{pmatrix}
\]

Some web-links on difference equations:

http://hypatia.math.uri.edu/~kulem/diffeqaturi/dehomepage.html
http://www.math.duke.edu/education/ccp/materials/linalg/diffeqs/contents.html

Problems on recurrent relations:
(and the last four are about pigeonhole principle)

1. (UIUC 2004) Define a sequence \(\{a_n\} \) by \(a_0 = 0 \), \(a_1 = 1 \), \(a_2 = 2 \), and \(a_n = a_{n-1} + a_{n-2} - a_{n-3} + 1 \) for \(n \geq 3 \). Find, with proof, \(a_{2004} \).

2. (UIUC 1999) Define a sequence \(\{x_n\} \) by \(x_1 = \sqrt{2} \), and \(x_{n+1} = \sqrt{2}x_n \) for \(n \geq 1 \). Prove the sequence \(\{x_n\} \) converges and find its limit.
3. (UIUC 1998) A sequence a_0, a_1, a_2, \ldots of real numbers is defined recursively by $a_0 = 1$, $a_{n+1} = \frac{a_n}{1+na_n}$, $n = 0, 1, 2, \ldots$. Find a general formula of a_n.

4. (UIUC 1997) Let $x_1 = x_2 = 1$, and $x_{n+1} = 1996x_n + 1997x_{n-1}$ for $n \geq 2$. Find (with proof) the remainder of x_{1997} upon division by 3.

5. (UIUC 1997) Let $x_0 = 0$, $x_1 = 1$, and $x_{n+1} = \frac{x_n + nx_{n-1}}{n+1}$ for $n \geq 1$. Show that the sequence $\{x_n\}$ converges and finds its limit.

6. (UIUC 2003 Mock) Let $f(x) = \frac{1}{1-x}$. Let $f_1(x) = f(x)$ and for each $n = 2, 3, \ldots$, let $f_n(x) = f(f_{n-1}(x))$. What is the value of $f_{2003}(2003)$?

7. (UIUC 2003 Mock) Given $x_0 = 0$, define $x_{k+1} = \frac{x_k^2 - 2}{2x_k - 3}$. Determine if the sequence $\{x_n\}$ is convergent and if it is, find its limit.

8. (UIUC 1995) Let c be a positive constant, let $0 < x_1 < x_0 < 1$, and for $n \geq 1$ let $x_{n+1} = cx_nx_{n-1}$. Prove that there exists a positive real number α such that the limit $L = \lim_{n \to \infty} \frac{x_{n+1}}{x_n^\alpha}$ exists and $0 < L < \infty$.

9. (Putnam 1966) Let $0 < x_0 < 1$, and $x_{n+1} = x_n(1-x_n)$ for $n \geq 0$. Prove that the limit $\lim_{n \to \infty} nx_n$ exists and is equal to 1.

10. (Stanford) Prove that there is some integer power of 2 that begins 2002· · ·.

11. (UIUC 1996) Let $a_1 < a_2 < \cdots < a_{43} < a_{44}$ be positive integers not exceeding 125. Prove that among the 43 differences $d_i = a_{i+1} - a_i$ $(i = 1, 2, 3, \cdots, 43)$ some value must occur at least 10 times.

12. (UIUC 2000) Suppose that a_1, a_2, \ldots, a_n are n given integers. Prove that there exist integers r and s with $0 \leq r < s \leq n$ such that $a_{r+1} + a_{r+2} + \cdots + a_s$ is divisible by n.

13. (UIUC 2002) Let $a_1 = 2$, $a_2 = 4$, $a_3 = 8$, and for $n \geq 4$ define a_n to be the last digit of the sum of the proceeding three terms in the sequence. Thus the first few terms of this sequence of digits are (in concatenated form) 24846828· · · Determine, with proof, whether or not the string 2002 occurs somewhere in the sequence.